SOLUTIONS FOR MIDTERM 2

1. The prime divisors of $29-1=28$ are 2 and 7 . Thus 5 is a primitive root modulo 29 if and only if $5^{\frac{28}{7}=4} \neq 1$ modulo 29 and $5^{\frac{28}{2}=14} \neq 1$ modulo 29 . $5^{4}=\left(5^{2}\right)^{2}=25^{2}=(-4)^{2}=16 \neq 1$ modulo 29 , but $5^{14}=\left(5^{2}\right)^{7}=25^{7}=$ $(-4)^{7}=-\left(2^{2}\right)^{7}=-2^{14}=-2^{5} \cdot 2^{5} \cdot 2^{4}=-32 \cdot 32 \cdot 16=-3 \cdot 3 \cdot 16=-3 \cdot 48=$ $-3 \cdot 19=-57=1$ modulo 29 .

Thus $5^{14}=1$ modulo 29 . Hence 5 is NOT a primitive root modulo 29 .
2. Answer: $x^{3}+1$.

3a. A polynomial of degree ≤ 3 is irreducible over $\mathbb{Z} / 3$ if and only if it has no linear factors, i.e. no roots in $\mathbb{Z} / 3$. There are just three elements in $\mathbb{Z} / 3$, namely, 0,1 and 2 . Since $p(0)=2 \neq 0, p(1)=1 \neq 0$ and $p(2)=2 \neq 0$, none of the elements of $\mathbb{Z} / 3$ are roots of $p(x)$. This proves that $p(x)$ is irreducible.
3b. $(2 \bar{x}+1)(\bar{x}+2)=2 \bar{x}^{2}+5 \bar{x}+2=2(-\bar{x}-2)+5 \bar{x}+2=3 \bar{x}-2=1$. I used $\bar{x}^{2}=-\bar{x}-2$ because $p(\bar{x})=\bar{x}^{2}+\bar{x}+2=0$. Answer: $a=0, b=1$.
3c. It follows from 3 b that $(\bar{x}+2)^{-1}=2 \bar{x}+1$.
$\mathbf{3 d}$. The only prime divisor of $9-1=8$ is 2 . Thus \bar{x} is a primitive root if and only if $\bar{x}^{\frac{8}{2}=4} \neq 1$ modulo $p(x)$. The remainder of x^{4} upon division by $p(x)$ is $2 \neq 1$. Thus \bar{x} IS a primitive root.
4. Linearly dependent over \mathbb{F}_{2} because $(1,1,0)+(1,0,1)+(0,1,1)=(0,0,0)$. But linearly independent over \mathbb{F}_{3} because $c_{1}(1,1,0)+c_{2}(1,0,1)+c_{3}(0,1,1)=$ $(0,0,0)$ implies $c_{1}+c_{2}=0 ; c_{1}+c_{3}=0 ; c_{2}+c_{3}=0$. The first equation implies $c_{1}=-c_{2}$ and the third implies $c_{3}=-c_{2}$. Plugging these into the second equation we get $-2 c_{2}=0$ which implies $c_{2}=0$ since $-2 \neq 0$ in \mathbb{F}_{3}. Hence $c_{1}=c_{3}=-c_{2}=0$, i.e. the only possible linear dependency relation is the trivial one.

5a. $\operatorname{gcd}\left(x^{3}+x^{2}+4 x+2, x^{6}-1\right)=x^{2}+4 x+1$. Thus a generating matrix with linearly independent rows is

$$
G=\left[\begin{array}{llllll}
1 & 4 & 1 & 0 & 0 & 0 \\
0 & 1 & 4 & 1 & 0 & 0 \\
0 & 0 & 1 & 4 & 1 & 0 \\
0 & 0 & 0 & 1 & 4 & 1
\end{array}\right]
$$

5b. $\operatorname{dim} C=6-\operatorname{deg}\left(x^{2}+4 x+1\right)=6-2=4$.
5c. $\frac{x^{6}-1}{x^{2}+4 x+1}=x^{4}+x^{3}+4 x+4$. Reversing coefficients, $h(x)=1+x+4 x^{3}+4 x^{4}$. Thus a check matrix with linearly independent rows is

$$
H=\left[\begin{array}{llllll}
1 & 1 & 0 & 4 & 4 & 0 \\
0 & 1 & 1 & 0 & 4 & 4
\end{array}\right]
$$

