SOLUTIONS FOR MIDTERM 2

1. The prime divisors of 29 - 1 = 28 are 2 and 7. Thus 5 is a primitive root modulo 29 if and only if $5^{\frac{28}{7}=4} \neq 1$ modulo 29 and $5^{\frac{28}{2}=14} \neq 1$ modulo 29. $5^4 = (5^2)^2 = 25^2 = (-4)^2 = 16 \neq 1$ modulo 29, but $5^{14} = (5^2)^7 = 25^7 = (-4)^7 = -(2^2)^7 = -2^{14} = -2^5 \cdot 2^5 \cdot 2^4 = -32 \cdot 32 \cdot 16 = -3 \cdot 3 \cdot 16 = -3 \cdot 48 = -3 \cdot 19 = -57 = 1$ modulo 29.

Thus $5^{14} = 1$ modulo 29. Hence 5 is NOT a primitive root modulo 29.

2. Answer: $x^3 + 1$.

3a. A polynomial of degree ≤ 3 is irreducible over $\mathbb{Z}/3$ if and only if it has no linear factors, i.e. no roots in $\mathbb{Z}/3$. There are just three elements in $\mathbb{Z}/3$, namely, 0, 1 and 2. Since $p(0) = 2 \neq 0$, $p(1) = 1 \neq 0$ and $p(2) = 2 \neq 0$, none of the elements of $\mathbb{Z}/3$ are roots of p(x). This proves that p(x) is irreducible.

3b. $(2\bar{x}+1)(\bar{x}+2) = 2\bar{x}^2 + 5\bar{x} + 2 = 2(-\bar{x}-2) + 5\bar{x} + 2 = 3\bar{x} - 2 = 1$. I used $\bar{x}^2 = -\bar{x} - 2$ because $p(\bar{x}) = \bar{x}^2 + \bar{x} + 2 = 0$. Answer: a = 0, b = 1.

3c. It follows from 3b that $(\bar{x} + 2)^{-1} = 2\bar{x} + 1$.

3d. The only prime divisor of 9 - 1 = 8 is 2. Thus \bar{x} is a primitive root if and only if $\bar{x}^{\frac{8}{2}=4} \neq 1$ modulo p(x). The remainder of x^4 upon division by p(x) is $2 \neq 1$. Thus \bar{x} IS a primitive root.

4. Linearly dependent over \mathbb{F}_2 because (1,1,0)+(1,0,1)+(0,1,1) = (0,0,0). But linearly independent over \mathbb{F}_3 because $c_1(1,1,0)+c_2(1,0,1)+c_3(0,1,1) = (0,0,0)$ implies $c_1+c_2=0$; $c_1+c_3=0$; $c_2+c_3=0$. The first equation implies $c_1=-c_2$ and the third implies $c_3=-c_2$. Plugging these into the second equation we get $-2c_2=0$ which implies $c_2=0$ since $-2 \neq 0$ in \mathbb{F}_3 . Hence $c_1=c_3=-c_2=0$, i.e. the only possible linear dependency relation is the trivial one.

5a. $gcd(x^3 + x^2 + 4x + 2, x^6 - 1) = x^2 + 4x + 1$. Thus a generating matrix with linearly independent rows is

$$G = \begin{bmatrix} 1 & 4 & 1 & 0 & 0 & 0 \\ 0 & 1 & 4 & 1 & 0 & 0 \\ 0 & 0 & 1 & 4 & 1 & 0 \\ 0 & 0 & 0 & 1 & 4 & 1 \end{bmatrix}.$$

5b. dim $C = 6 - \deg(x^2 + 4x + 1) = 6 - 2 = 4$.

5c. $\frac{x^6-1}{x^2+4x+1} = x^4+x^3+4x+4$. Reversing coefficients, $h(x) = 1+x+4x^3+4x^4$. Thus a check matrix with linearly independent rows is

$$H = \begin{bmatrix} 1 & 1 & 0 & 4 & 4 & 0 \\ 0 & 1 & 1 & 0 & 4 & 4 \end{bmatrix}$$